Tetrahedron 65 (2009) 328-335

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

N-(α -Amidoalkyl)benzotriazole-mediated synthesis of β' -amido β -diketones: a general synthetic protocol for *N*-[β -(3,5-di and 1,3,5-trisubstituted pyrazol-4-yl)alkyl] amides

İlhami Çelik*, Nevin Kanışkan, Şule Kökten

Department of Chemistry, Faculty of Science, Anadolu University, 26470 Eskişehir, Turkey

ARTICLE INFO

Article history: Received 29 July 2008 Received in revised form 1 October 2008 Accepted 16 October 2008 Available online 1 November 2008

Keywords: Benzotriazole N-(α-Amidoalkyl)benzotriazole Pyrazole β'-Amido β-diketone

ABSTRACT

Various β' -amido- β -diketones were first synthesized with N-(α -amidoalkyl)benzotriazole-mediated amidoalkylation of 1,3-diketones in moderate yields. These intermediates undergo rapid condensation with hydrazines to give the corresponding N-[β -(3,5-di and 1,3,5-trisubstituted pyrazol-4-yl)alkyl]amides. © 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Substituted pyrazoles represent an important class of heterocyclic compounds used in the pharmaceutical industry, since they form the core structures of many commercial drugs such as Zometapine,^{1a} Sildenafil,^{1b} Celebrex,^{1c} and Rimonabant (Fig. 1).^{1d} They are also known to show a wide range of biological properties such as selective Human C1s inhibition,^{2a} antitumor cyclin-dependent kinase (CDK) inhibition,^{2b} monoamine oxidase-B (MOA-B) inhibition, and anti-inflammation.^{2c,11d} In addition to their biological activities, pyrazoles are also used for the preparation of pyrazole dyes,³ couplers for photographic material,⁴ herbicides,⁵ and luminescent and fluorescent substances.⁶ Recently, they have appeared as intermediates for fused pyrazoles,⁷ chiral catalysts,⁸ ligands,⁹ and moieties to enhance regio- and stereoselectivity.

Many methods for the synthesis of pyrazoles have been developed.¹⁰ The methods developed to synthesize pyrazoles are: (i) cyclocondensation of hydrazine with 2,3-dibromopropionitriles,^{11a} propargyl aldehydes, 1,3-dicarbonyl compounds,^{11b-f} or their functional derivatives such as enol ethers, acetales, enamine, α , β -ethynyl ketones, or esters,^{11g-k} (ii) 1,3-dipolar cycloadditions of diazoalkanes or nitrile imines with alkynes or alkenes,¹² (iii) elimination of pyrazoline.¹³ Among the methods reported, the most common method is the cyclocondensation of hydrazine with

1,3-dicarbonyl compounds or their functional derivatives, although it gives a mixture of isomers.

Tetrahedror

Benzotriazole-mediated amidoalkylation was introduced in 1988, and provides advantages over previously reported methods. It was already demonstrated for the amidoalkylation of (i) Grignards, ^{14a}

^{*} Corresponding author. Tel.: +90 2223350580/4792; fax: +90 2223204910. *E-mail address:* ilcelik@anadolu.edu.tr (İ. Çelik).

^{0040-4020/\$ -} see front matter \odot 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2008.10.047

(ii) malonates and acetoacetates,^{14b} (iii) cyanide anion,^{14c} (iv) mercaptans and alcohols,^{14d,e} (v) electron-rich aromatics,^{14f} (vi) amines,^{14g} and (vii) nitroalkanes, nitriles, and esters^{14h} (Scheme 1).

We now report that N-(α -amidoalkyl)benzotriazole-mediated amidoalkylation extends the amidoalkylation of 1,3-diketones to give the corresponding novel β '-amido β -diketones and the synthesis of N-[β -(3,5-di and 1,3,5-trisubstituted pyrazol-4-yl)alkyl]amides by condensation of hydrazines with the β '-amido β -diketones.

2. Result and discussion

2.1. Preparation of *N*-(α-amidoalkyl)benzotriazoles

The amidoalkylating reagents employed, *N*-(α -amidoalkyl)benzotriazoles **1a–j**, are easily available by the well-established condensation of benzotriazole, an aldehyde, and an amide in the presence of a catalytic amount of *p*-toluenesulfonic acid in toluene at reflux with azeotropic removal of water.¹⁴ Aromatic and heteroaromatic aldehydes gave stable products **1** in good yields, which were fully characterized on the basis of their ¹H and ¹³C NMR spectra and elemental analyses. The ¹H and ¹³C NMR spectra of these *N*-(α -amidoalkyl)benzotriazoles confirmed that the products **1a–j** are all benzotriazol-1-yl compounds with no isomerization to benzotriazol-2-yl isomers.

2.2. Synthesis of β' -amido β -diketones

The synthesis of β -acetamido carbonyl compounds has attracted attention in organic synthesis, being used for the synthesis of various bioactive molecules such as antibiotic nikkomycins or neopolyoxines¹⁵ and the preparation of 1,3-amino alcohols¹⁶ or β -amino acids.¹⁷ β' -Amido β -diketones were previously prepared by one-pot multi-component reactions (MCRs) using CoCl₂,¹⁷ FeCl₃,^{18a} and BiOCl^{18b} as catalysts, and by the asymmetric Mannich reaction of dicarbonyl compounds with α -amido sulfones catalyzed by cinchona.^{18c} Although multi-component reactions (MCRs) have been used for the preparation of β' -amido β -diketones, they also have some disadvantages. Acetoacetone was only used as a starting material in the methods mentioned above. Therefore, they obtained limited amounts of β' -amido β -diketones.

The second step in our synthetic sequence was the preparation of the β' -amido β -diketones by the reaction of potassium enolates, prepared in situ by treating the corresponding 1,3-diketones with *t*-BuOK in DMSO at room temperature, with **1a–j**. *N*-(α -Amidoalkyl)benzotriazoles **1a–j** reacted efficiently with the appropriate 1,3diketones **2** in the presence of 1.2 equiv *t*-BuOK in DMSO at room temperature to afford the amidoalkylated product **3** in good yields (**12–90**%) (Scheme 2 and Table 1). The formation of the β' -amido β -diketones of type **3** is indicated by the loss of benzotriazole signals in the ¹H and ¹³C NMR spectra. The doublets at 7.93–6.20 ppm and at 6.45–6.23 ppm in the ¹H NMR spectra of **3a–j** were assigned to the NH proton and double activated methine protons, respectively. The doublets in the ¹H NMR spectra of **3a–j** were assigned to the methine proton next to NH. In the ¹³C NMR spectra of compounds **3a–j**, resonances arising from the diketone and amide carbonyls are found in the regions 205.6–195.9 ppm, 202.8–193.7 ppm, and 178.4–169.5 ppm. The ¹H and ¹³C NMR spectra of **3a–j** were single diastereomers. The ratio of *syn/anti* diastereomers was determined by the ¹H NMR spectra. The structures of compounds **3a–j** were also supported by their elemental analyses and spectral data.

During the course of our work, we noticed that when the aldehyde contains a nitro group, it gives both byproduct **3f**', which is the major product, and the expected product **3f**. This byproduct **3f**' was fully characterized by ¹H and ¹³C NMR spectroscopy and elemental analyses. Scheme 3 gives a possible explanation for the formation of the byproduct.

We assumed that it provides the alkene owing to electronic effects or electron withdrawing nature of the nitro group.

2.3. Synthesis of N-[β -(3,5-di and 1,3,5-trisubstituted pyrazol-4-yl)alkyl]amides

As mentioned above, many methods for the preparation of pyrazoles have been developed. In spite of the fact that among these methods, cyclocondensation of hydrazine with 1,3-dicarbonyl compounds or their functional derivatives give a mixture of isomers, it is the most common method for the preparation of pyrazoles. In this manner, the next step in our synthetic sequence was to obtain *N*-[β -(3,5-di and 1,3,5-trisubstituted pyrazol-4-yl)alkyl]-amides by the cyclocondensation of hydrazine or substituted hydrazine with β' -amido β -diketones. A solution of hydrazine was slowly added to the corresponding β' -amido β -diketone in absolute EtOH and then the mixture was stirred at reflux for 1 h. The solvent was evaporated and the residue was placed on a silica gel column and eluted with hexanes/EtOAc (1:1) to give the corresponding

Table 1

Preparation of β' -amido β -diketones **3a**-**j**

N-(α-Amidoalkyl)benzotriazole		Diketone	Product			Yield (%)
	1a	Me	Me Me MeCOHN	3a		89 ^a
	1b	Ph Me	Me Ph EtCOHN Me	3b	Me O Ph EtCOHN Me	69 ^b
t-BuCOHN OMe	1c	Ph Ph	Ph Ph t-BuCOHN OMe	3c		53
	1d	Me	Me EtCOHN	3d		79
	1e	Me	Me EtCOHN CI	3e		68
	1f	Ph Ph	Ph Ph MeCOHN O ₂ N	3f		12
MeCOHN	1g	Me Me	Me Me MeCOHN	3g		85
t-BuCOHN	1h	Me Me	Me t-BuCOHN	3h		90
	1i	Me Me		3i		88
	1j	Ph Ph	Ph Ph MeCOHN S	3j		44

^a Lit.^{18b} yield.
 ^b Diastereomeric ratio was evaluated by ¹H NMR analysis.

 Table 2

 Sythesis of N-[β-(3,5-di and 1,3,5-trisubstituted pyrazol-4-yl)alkyl]amides 4a-k

β'-Amido β-diketone		Hydrazine	Product		Yield (%) ^a
Me Me MeCOHN	3a	NH ₂ NH ₂	MeCOHN Me Me	4a	66
Ph Me EtCOHN Me	3b	NH ₂ NH ₂	EtCOHN Me H	4b	78
Ph Ph t-BuCOHN OMe	3c	MeNHNH ₂	t-BuCOHN Ph N Ph MeO	4c	84
	3d	PhNHNH ₂	EtCOHN Me Ph	4d	80
	3e	PhNHNH ₂	EtCOHN Me CI	4e	82
Ph Ph MeCOHN O ₂ N	3f	NH ₂ NH ₂	MeCOHN Ph N N O ₂ NPh H	4f	89
Me Me MeCOHN	3g	NH ₂ NH ₂	MeCOHN Me N Me H	4g	95
Me t-BuCOHN	3h	NH2NH2	t-BuCOHN Me N	4h	63
Me t-BuCOHN	3h	MeNHNH ₂	t-BuCOHN Me N Me Me	4i	78
	3i	NH ₂ NH ₂	EtCOHN Me N H	4 j	77
Ph Ph MeCOHN	3j	NH ₂ NH ₂	MeCOHN S Ph H	4k	59

^a Isolated yields.

N-[β -(3,5-di and 1,3,5-trisubstituted pyrazol-4-yl) alkyl] amide **4** in good yields (**59–95**%) (Scheme 4 and Table 2).

The formation of the substituted pyrazole of **4** is indicated by the loss of the carbonyl signals in ¹³C NMR spectra. The doublets at 6.97–6.19 ppm and at 6.23–5.96 ppm in the ¹H NMR spectra of **4a–k** were assigned to the methine proton next to the NH and NH protons, respectively. The structure of compounds **4a–k** was also supported by their elemental analyses and spectral data.

3. Conclusion

In summary, we have developed a novel and convenient route for the synthesis of a wide range of β' -amido β -diketones **3a–j**. The method developed is simple and applicable to the preparation of β' amido β -diketones **3a–j**. In many cases, β' -amido β -diketones were obtained in high yields. β' -Amido β -diketones were treated with hydrazine and substituted hydrazines to form *N*-[β -(3,5-di and 1,3,5-trisubstituted pyrazol-4-yl)alkyl]amides **4a–k** in good to excellent yields. Our method proved that it is useful for the preparation of chiral pyrazole amides and allowed us to reach novel pyrazole amides.

4. Experimental section

4.1. General

All melting points are uncorrected. The glassware was routinely oven-dried at 110 °C for a minimum of 4 h. DMSO was dried over molecular sieves prior to use. Column chromatography was performed on silica gel 70–230 mesh. ¹H and ¹³C NMR spectra were recorded on a Bruker Advance 500 DPX spectrometer (¹H at 500 MHz and ¹³ C at 125 MHz) in CDCl₃ with TMS as the internal standard. Elemental analyses were carried out on a VarioEL III instrument. FTIR spectra were determined on a PerkinElmer 100 FT-IR spectrometer.

4.2. General procedure for the preparation of N-(α -amidoalkyl)benzotriazoles (1a–j)

N-(α -Amidoalkyl)benzotriazoles **1** were prepared according to the literature procedure.^{14a}

4.2.1. N-(Benzotriazol-1-yl-phenylmethyl)acetamide 1a

White crystals, mp 175–177 °C (lit.^{14h} mp 174–177 °C); IR ν_{max} (KBr): 3298 (NH), 1654 (CO) cm⁻¹; ¹H NMR δ 8.24 (d, *J*=9.0 Hz, 1H), 8.03 (d, *J*=8.3 Hz, 1H), 7.93 (d, *J*=9.1 Hz, 1H), 7.66 (d, *J*=8.33 Hz, 1H), 7.44 (t, *J*=7.6 Hz, 1H), 7.36 (t, *J*=7.6 Hz, 1H), 7.31–7.29 (m, 5H), 2.06 (s, 3H); ¹³C NMR δ 170.5, 145.6, 136.1, 132.8, 129.2, 129.0, 128.0, 126.5, 124.5, 119.8, 110.0, 64.7, 22.9. Anal. Calcd for C₁₅H₁₄N₄O: C, 67.65; H, 5.30; N, 21.04. Found: C, 67.52; H, 5.25; N, 21.20.

4.2.2. N-(Benzotriazol-1-yl-p-tolylmethyl)propionamide 1b

White crystals, yield 68%, mp 112–113 °C; IR ν_{max} (KBr): 3314 (NH), 1667 (CO) cm⁻¹; ¹H NMR δ 8.07 (d, *J*=8.4 Hz, 1H), 7.88 (d, *J*=9.1 Hz, 1H), 7.67 (d, *J*=8.4 Hz, 1H), 7.49 (t, *J*=7.3 Hz, 2H), 7.39 (t, *J*=7.3 Hz, 1H), 7.19–7.13 (m, 4H), 2.39–2.34 (m, 1H), 2.33 (s, 3H), 2.32–2.27 (m, 1H), 1.15 (t, *J*=7.6 Hz, 3H); ¹³C NMR δ 173.6, 145.7,

139.2, 133.5, 132.8, 129.7, 127.9, 126.3, 124.3, 119.9, 109.9, 64.4, 29.2, 21.0, 9.2. Anal. Calcd for $C_{17}H_{18}N_4O\colon$ C, 69.37; H, 6.16; N, 19.03. Found: C, 69.20; H, 6.31; N, 18.95.

4.2.3. N-[Benzotriazol-1-yl-(4-methoxyphenyl)methyl]-2,2dimethyl propionamide **1c**

White crystals, yield 82%, mp 134–140 °C; IR ν_{max} (KBr): 3401 (NH), 1667 (CO) cm⁻¹; ¹H NMR δ 8.08 (d, *J*=8.4 Hz, 1H), 7.81 (d, *J*=8.8 Hz, 1H), 7.64 (d, *J*=8.4 Hz, 1H), 7.49 (t, *J*=7.5 Hz, 1H), 7.39 (t, *J*=7.6 Hz, 1H), 7.26 (d, *J*=8.6 Hz, 1H), 7.19 (d, *J*=8.8 Hz, 2H), 6.88 (d, *J*=8.8 Hz, 2H), 3.79 (s, 3H), 1.25(s, 9H); ¹³C NMR δ 178.2, 160.2, 145.7, 132.7, 128.8, 127.9, 127.7, 124.3, 119.9, 114.5, 109.7, 64.4, 55.4, 38.9, 27.4. Anal. Calcd for C₁₉H₂₂N₄O₂: C, 67.44; H, 6.55; N, 16.56. Found: C, 67.20; H, 6.87; N, 16.41.

4.2.4. N-[Benzotriazol-1-yl-(4-fluorophenyl)methyl]-propionamide 1d

White crystals, yield 63%, mp 123–125 °C; IR ν_{max} (KBr): 3284 (NH), 1652 (CO) cm⁻¹; ¹H NMR δ 8.09 (d, *J*=8.4 Hz, 1H), 7.91 (d, *J*=9.3 Hz, 1H), 7.67 (d, *J*=8.3 Hz, 1H), 7.53 (t, *J*=7.6 Hz, 1H), 7.42 (t, *J*=7.7 Hz, 2H), 7.29 (t, *J*=6.8 Hz, 2H), 7.04 (t, *J*=8.5 Hz, 2H), 2.39–2.29 (m, 2H), 1.17 (t, *J*=7.5 Hz, 3H); ¹³C NMR δ 173.5, 145.7, 132.7, 128.5, 128.4, 128.2, 124.6, 120.0, 116.2, 116.0, 109.7, 63.7, 29.3, 9.2. Anal. Calcd for C₁₆H₁₅FN₄O: C, 64.42; H, 5.07; N, 18.78. Found: C, 64.37; H, 5.01; N, 18.52.

4.2.5. N-[Benzotriazol-1-yl-(4-chlorophenyl)methyl]propionamide **1e**

White crystals, yield 74%, mp 133–134 °C; IR ν_{max} (KBr): 3298 (NH), 1650 (CO) cm⁻¹; ¹H NMR δ 8.07 (d, *J*=8.3 Hz, 1H), 7.91 (d, *J*=9.0 Hz, 1H), 7.72 (d, *J*=9.0 Hz, 1H), 7.68 (d, *J*=8.3 Hz, 1H), 7.52 (t, *J*=7.5 Hz, 1H), 7.42 (t, *J*=7.5 Hz, 1H), 7.30 (d, *J*=8.3 Hz, 2H), 7.22 (d, *J*=8.1 Hz, 2H), 2.43–2.28 (m, 2H), 1.15 (t, *J*=7.4 Hz, 3H); ¹³C NMR δ 173.8, 145.6, 135.3, 134.9, 132.8, 129.2, 128.2, 128.0, 124.6, 119.9, 109.8, 63.7, 29.2, 9.2. Anal. Calcd for C₁₆H₁₅ClN₄O: C, 61.05; H, 4.80; N, 17.80. Found: C, 61.16; H, 5.01; N, 17.62.

4.2.6. N-[Benzotriazol-1-yl-(2-nitrophenyl)methyl]acetamide 1f

Yellow powder, yield 70%, mp 157–158 °C; IR ν_{max} (KBr): 3245 (NH), 1691 (CO) cm⁻¹; ¹H NMR δ 8.64 (d, *J*=9.3 Hz, 1H), 8.07–8.04 (m, 2H), 7.98 (d, *J*=8.4 Hz, 1H), 7.88 (d, *J*=8.4 Hz, 1H), 7.77 (d, *J*=8.1 Hz, 1H), 7.62–7.56 (m, 3H), 7.42 (t, *J*=7.7 Hz, 1H), 2.10 (s, 3H); ¹³C NMR δ 169.9, 147.9, 145.4, 133.8, 132.8, 130.7, 130.4, 129.3, 128.5, 125.6, 124.9, 119.5, 110.6, 60.8, 22.9. Anal. Calcd for C₁₅H₁₃N₅O₃: C, 57.87; H, 4.21; N, 22.20. Found: C, 57.67; H, 4.35; N, 22.10.

4.2.7. N-(Benzotriazol-1-yl-naphthalen-1-yl-methyl)acetamide 1g

White crystals, yield 82%, mp 154–156 °C; IR ν_{max} (KBr): 3311 (NH), 1663 (CO) cm⁻¹; ¹H NMR δ 8.59 (d, *J*=9.3 Hz, 1H), 8.09 (dd, *J*=11.6, 8.3 Hz, 2H), 7.94 (d, *J*=7.7 Hz, 1H), 7.87 (d, *J*=7.7 Hz, 1H), 7.64–7.57 (m, 2H), 7.54–7.51 (m, 2H), 7.45–7.35 (m, 3H), 7.31 (t, *J*=7.8 Hz, 1H), 2.11 (s, 3H); ¹³C NMR δ 169.8, 133.9, 132.6, 131.7, 130.3, 130.2, 129.1, 127.9, 127.6, 126.5, 125.1, 124.5, 124.4, 122.4, 120.0, 118.4, 109.9, 62.4, 23.0. Anal. Calcd for C₁₉H₁₆N₄O: C, 72.13; H, 5.10; N, 17.71. Found: C, 72.01; H, 5.23; N, 17.81.

4.2.8. N-(Benzotriazole-1-yl-pyridin-3-yl-methyl)propionamide 1h

White crystals, yield 85%, mp 73–75 °C; IR ν_{max} (KBr): 3336 (NH), 1674 (CO) cm⁻¹; ¹H NMR δ 8.62 (d, *J*=2.1 Hz, 1H), 8.58 (d, *J*=3.9 Hz, 1H), 8.06 (d, *J*=8.4 Hz, 1H), 8.00 (d, *J*=9.0 Hz, 1H), 7.83 (d, *J*=8.2 Hz, 1H), 7.71 (d, *J*=8.4 Hz, 1H), 7.52 (t, *J*=7.3 Hz, 2H), 7.41 (t, *J*=7.3 Hz, 1H), 7.25 (dd, *J*=8.0, 4.9 Hz, 1H), 1.24 (s, 9H); ¹³C NMR δ 178.7, 150.2, 147.9, 145.6, 134.4, 132.8, 132.6, 128.4, 124.7, 123.7, 120.0, 109.6, 62.7, 39.0, 27.2. Anal. Calcd for C₁₇H₁₉N₅O: C, 66.00; H, 6.16; N, 22.64. Found: C, 65.71; H, 6.52; N, 22.79.

4.2.9. N-(Benzotriazol-1-yl-furan-3-yl-methyl)propionamide 1i

Yellow powder, yield 56%, mp 175–177 °C; IR ν_{max} (KBr): 3255 (NH), 1685 (CO) cm⁻¹; ¹H NMR δ 8.07 (d, *J*=8.4 Hz, 1H), 7.88 (d, *J*=9.1 Hz, 1H), 7.80 (d, *J*=8.3 Hz, 1H), 7.52 (t, *J*=7.8 Hz, 1H), 7.48 (s, 1H), 7.45 (d, *J*=9.1 Hz, 1H), 7.43–7.39 (m, 3H), 2.38–2.21 (m, 2H), 1.13 (t, *J*=7.5 Hz, 3H); ¹³C NMR δ 173.6, 145.5, 144.2, 140.9, 132.5, 128.1, 124.5, 122.5, 119.8, 110.0, 109.2, 58.2, 29.1, 9.2. Anal. Calcd for C₁₄H₁₄N₄O₂: C, 62.21; H, 5.22; N, 20.73. Found: C, 61.83; H, 5.30; N, 20.63.

4.2.10. N-(Benzotriazol-1-yl-thiophen-2-yl-methyl)acetamide 1j

Brown crystals, yield 67%, mp 141–142 °C; IR ν_{max} (KBr): 3240 (NH), 1684 (CO) cm⁻¹; ¹H NMR δ 8.56 (d, *J*=8.9 Hz, 1H), 8.17 (d, *J*=8.9 Hz, 1H), 8.05 (d, *J*=8.2 Hz, 1H), 7.76 (d, *J*=8.2 Hz, 1H), 7.50 (t, *J*=7.6 Hz, 1H), 7.40 (t, *J*=7.6 Hz, 1H), 7.28 (d, *J*=4.8 Hz, 1H), 7.03 (d, *J*=3.4 Hz, 1H), 6.92 (AB, *J*_{AB}=4.8, 3.8 Hz, 1H), 2.06 (s, 3H); ¹³C NMR δ 170.2, 145.4, 138.8, 132.3, 127.9, 126.9, 126.8, 126.7, 124.4, 119.7, 110.0, 61.0, 22.6. Anal. Calcd for C₁₃H₁₂N₄OS: C, 57.34; H, 4.44; N, 20.57. Found: C, 57.16; H, 4.50; N, 20.21.

4.3. General procedure for the preparation of β' -amido β -diketones (3a–j)

A mixture of 1,3-diketone (2 mmol) and potassium *tert*-butoxide (0.25 g, 2.4 mmol) in DMSO (10 mL) was stirred at room temperature for 40 min. To the resulting solution, *N*-(α -amidoalkyl)benzotriazoles **1** (2 mmol) in DMSO (10 mL) was added dropwise and the mixture was stirred at room temperature for 8 h. The mixture was poured into water (40 mL) and then extracted with ethyl acetate (4×25 mL). The extracts were washed with water, dried over MgSO₄, and the solvent was removed under reduced pressure. The residue was placed in a silica gel column and eluted with hexanes/EtOAc (1:1) to give the pure product **3**.

4.3.1. N-(2-Acetyl-3-oxo-1-phenylbutyl)acetamide 3a

White crystals, yield 89% mp 133–134 °C (lit.^{18b} mp 132–133 °C); IR ν_{max} (KBr): 3359 (NH), 1700 (CO, diketone), 1670 (CO, diketone), 1649 (CO, amide), 1586, 1529, 1456, 1366, 1298, 1274, 1201, 1162, 1104, 953, 891, 758, 706, 617 cm⁻¹; ¹H NMR δ 7.35–7.25 (m, 5H), 7.13 (d, *J*=9.5 Hz, 1H), 5.88 (dd, *J*=9.4, 5.9 Hz, 1H), 4.32 (d, *J*=5.9 Hz, 1H), 2.27 (s, 3H), 2.11 (s, 3H), 2.01 (s, 3H); ¹³C NMR δ 205.3, 202.6, 169.8, 139.3, 128.9, 127.7, 126.4, 70.5, 51.9, 31.1, 30.0, 23.3. Anal. Calcd for C₁₄H₁₇NO₃: C, 68.00; H, 6.93; N, 5.66. Found: C, 67.85; H, 6.82; N, 5.60.

4.3.2. N-(2-Benzoyl-3-oxo-1-p-tolylbutyl)propionamide 3b

White crystals, yield 69%, mp 59–60 °C; diastereoisomeric mixture (*syn/anti*: 50:50); IR ν_{max} (KBr): 3285 (NH), 1723 (CO, diketone), 1676 (CO, diketone), 1647 (CO, amide) cm⁻¹; ¹H NMR δ 7.95 (d, *J*=8.2 Hz, 1H), 7.80 (d, *J*=8.2 Hz, 1H), 7.63–7.57 (m, 1H), 7.50 (t, *J*=7.7 Hz, 1H), 7.45 (t, *J*=7.8 Hz, 1.5H), 7.24 (d, *J*=8.0 Hz, 1H), 7.20 (d, *J*=8.1 Hz, 1H), 7.11 (d, *J*=8.0 Hz, 1H), 7.08 (d, *J*=8.0 Hz, 1H), 6.57 (d, *J*=9.3 Hz, 0.5H), 6.01 (dd, *J*=9.2, 4.2 Hz, 0.5H), 5.95 (t, *J*=8.5 Hz, 0.5H), 5.19 (d, *J*=4.3 Hz, 0.5H), 5.14 (d, *J*=7.6 Hz, 0.5H), 2.41 (s, 1.5H), 2.32–2.29 (m, 1H), 2.31 (s, 1.5H), 1.28 (s, 1.5H), 2.23–2.21 (m, 1H), 2.19 (s, 1.5H), 1.18 (t, *J*=7.6 Hz, 1.5H), 1.13 (t, *J*=7.6 Hz, 1.5H); ¹³C NMR δ 204.2, 202.5, 197.4, 193.9, 173.5, 173.1, 137.5, 137.2, 136.9, 136.4, 136.0, 134.0, 133.9, 129.5, 129.4, 129.0, 128.9, 128.6, 128.3, 126.7, 126.3, 67.0, 64.3, 52.2, 51.8, 29.8, 29.4, 29.0, 21.0, 9.7. Anal. Calcd for C₂₁H₂₃NO₃: C, 74.75; H, 6.87; N, 4.15. Found: C, 75.64; H, 7.20; N, 4.11.

4.3.3. N-[2-Benzoyl-1-(4-methoxyphenyl)-3-oxo-3-phenylpropyl]-2,2-dimethyl propionamide **3c**

White crystals, yield 53%, mp 180–181 °C; IR ν_{max} (KBr): 3386 (NH), 1690 (CO, diketone), 1655 (CO, amide) cm⁻¹; ¹H NMR δ 8.07

(d, J=8.1 Hz, 2H), 7.93 (d, J=8.6 Hz, 1H), 7.82 (d, J=8.2 Hz, 2H), 7.67 (t, J=7.4 Hz, 1H), 7.58–7.52 (m, 3H), 7.40 (t, J=7.8 Hz, 2H), 7.33 (d, J=8.6 Hz, 2H), 6.84 (d, J=8.6 Hz, 2H), 6.04 (d, J=3.5 Hz, 1H), 5.86 (dd, J=8.6, 3.3 Hz, 1H), 3.77 (s, 3H), 1.23 (s, 9H); ¹³C NMR δ 196.7, 193.8, 178.0, 158.8, 136.5, 135.2, 134.1, 133.8, 132.3, 129.3, 128.9, 128.6, 128.3, 127.7, 114.1, 59.0, 55.3, 52.2, 38.8, 27.5. Anal. Calcd for C₂₈H₂₉NO₄: C, 75.82; H, 6.59; N, 3.16. Found: C, 75.61; H, 6.81; N, 3.02.

4.3.4. N-[2-Acetyl-1-(4-fluorophenyl)-3-oxobutyl]propionamide 3d

White crystals, yield 79%, mp 138–139 °C; IR ν_{max} (KBr): 3291 (NH), 1723 (CO, diketone), 1701 (CO, diketone), 1647 (CO, amide) cm⁻¹; ¹H NMR δ 7.28–7.25 (m, 2H), 7.09 (d, *J*=9.2 Hz, 1H), 7.02 (d, *J*=8.6 Hz, 2H), 5.84 (dd, *J*=9.3, 6.0 Hz, 1H), 4.29 (d, *J*=5.9 Hz, 1H), 2.26 (s, 3H), 2.22 (q, *J*=7.6 Hz, 2H), 2.11 (s, 3H), 1.13 (t, *J*=7.6 Hz, 3H); ¹³C NMR δ 205.1, 202.4, 173.5, 128.2, 128.1, 115.8, 115.6, 70.6, 51.1, 31.0, 30.0, 29.7, 9.7. Anal. Calcd for C₁₅H₁₈FNO₃: C, 64.50; H, 6.50; N, 5.01. Found: C, 64.42; H, 6.67; N, 4.88.

4.3.5. N-[2-Acetyl-1-(4-chlorophenyl)-3-oxobutyl]propionamide 3e

White crystals, yield 68%, mp 146–147 °C; IR ν_{max} (KBr): 3288 (NH), 1703 (CO, diketone), 1701 (CO, diketone), 1646 (CO, amide) cm⁻¹; ¹H NMR δ 7.32–7.29 (m, 2H), 7.23 (d, *J*=8.5 Hz, 2H), 7.06 (d, *J*=9.2 Hz, 1H), 5.84 (dd, *J*=9.3, 5.6 Hz, 1H), 4.28 (d, *J*=5.6 Hz, 1H), 2.29 (s, 3H), 2.25 (q, *J*=7.6 Hz, 2H), 2.11 (s, 3H), 1.15 (t, *J*=7.6 Hz, 3H); ¹³C NMR δ 205.1, 202.3, 173.5, 138.0, 133.6, 129.0, 127.8, 70.2, 51.1, 31.2, 29.9, 29.7, 9.7. Anal. Calcd for C₁₅H₁₈ClNO₃: C, 60.91; H, 6.13; N, 4.74. Found: C, 60.73; H, 6.34; N, 4.54.

4.3.6. N-[2-Benzoyl-(2-nitrophenyl)-3-oxo-3-

phenylpropyl]acetamide **3f**

Yellow crystals, yield 12%, mp 106–107 °C; IR ν_{max} (KBr): 3284 (NH), 1695 (CO, diketone), 1669 (CO, amide) cm⁻¹; ¹H NMR δ 8.15 (d, *J*=7.6 Hz, 2H), 7.97 (d, *J*=7.2 Hz, 1H), 7.80 (d, *J*=7.5 Hz, 2H), 7.77 (d, *J*=7.9 Hz, 1H), 7.65 (t, *J*=7.4 Hz, 1H), 7.57–7.52 (m, 5H), 7.39 (t, *J*=7.9 Hz, 3H), 6.45 (d, *J*=4.7 Hz, 1H), 6.28 (dd, *J*=7.9, 4.4 Hz, 1H), 2.00 (s, 3H); ¹³C NMR δ 195.9, 193.7, 169.6, 148.2, 136.5, 135.3, 134.9, 134.3, 134.1, 133.5, 131.0, 129.2, 129.0, 128.9, 128.7, 128.3, 125.1, 56.6, 50.3, 23.2. Anal. Calcd for C₂₄H₂₀N₂O₅: C, 69.22; H, 4.84; N, 6.73. Found: C, 68.84; H, 5.05; N, 6.96.

4.3.7. N-(2-Acetyl-1-naphthalen-1-yl-3-oxobutyl)acetamide 3g

White crystals, yield 85%, mp 181–182 °C; IR ν_{max} (KBr): 3258 (NH), 1722 (CO, diketone), 1703 (CO, diketone), 1648 (CO, amide) cm⁻¹; ¹H NMR δ 8.22 (d, *J*=8.5 Hz, 1H), 7.89 (d, *J*=8.1 Hz, 1H), 7.79 (t, *J*=4.7 Hz, 1H), 7.63 (t, *J*=7.7 Hz, 1H), 7.54 (t, *J*=7.5 Hz, 1H), 7.40 (d, *J*=4.0 Hz, 2H), 7.34 (br s, 1H), 6.67 (dd, *J*=9.2, 5.8 Hz, 1H), 4.49 (d, *J*=5.7 Hz, 1H), 2.34 (s, 3H), 2.00 (s, 3H), 1.98 (s, 3H); ¹³C NMR δ 205.6, 202.3, 169.5, 134.7, 134.0, 130.2, 129.3, 128.7, 127.1, 126.0, 125.2, 124.1, 122.4, 69.5, 48.2, 31.5, 29.8, 23.2. Anal. Calcd for C₁₈H₁₉NO₃: C, 72.71; H, 6.44; N, 4.71. Found: C, 72.36; H, 6.41; N, 4.81.

4.3.8. N-(2-Acetyl-3-oxo-1-pyridin-3-yl-butyl)-2,2-dimethyl propionamide **3h**

White crystals, yield 90%, mp 164–165 °C; IR ν_{max} (KBr): 3329 (NH), 1726 (CO, diketone), 1704 (CO, diketone), 1635 (CO, amide) cm⁻¹; ¹H NMR δ 8.57 (d, *J*=2.2 Hz, 1H), 8.53 (dd, *J*=4.8, 3.4 Hz, 1H), 7.59 (d, *J*=8.1 Hz, 1H), 7.45 (d, *J*=9.1 Hz, 1H), 7.29–7.28 (m, 1H), 5.89 (dd, *J*=9.1, 4.7 Hz, 1H), 4.35 (d, *J*=4.7 Hz, 1H), 2.36 (s, 3H), 2.11 (s, 3H), 1.22 (s, 9H); ¹³C NMR 205.3, 202.2, 178.4, 149.0, 147.9, 135.3, 134.2, 123.5, 69.4, 49.4, 38.9, 31.5, 29.7, 27.3. Anal. Calcd. for C₁₆H₂₂N₂O₃: C, 66.18; H, 7.64; N, 9.65. Found: C, 65.97; H, 7.61; N, 9.93.

4.3.9. N-(2-Acetyl-1-furan-3-yl-3-oxobutyl)propionamide 3i

White crystals, yield 88%, mp 128–130 °C; IR ν_{max} (KBr): 3304 (NH), 1721 (CO, diketone), 1699 (CO, diketone), 1647 (CO, amide) cm⁻¹; ¹H NMR δ 7.33 (d, *J*=13.1 Hz, 2H), 6.96 (d, *J*=9.3 Hz, 1H), 6.31 (s, 1H), 5.81 (dd, *J*=9.4, 5.4 Hz, 1H), 4.23 (d, *J*=5.6 Hz, 1H), 2.28 (s, 3H), 2.19 (q, *J*=7.6 Hz, 2H), 2.17 (s, 3H), 1.11 (t, *J*=7.6 Hz, 3H); ¹³C NMR δ 205.1, 202.8, 173.5, 143.5, 139.7, 124.5, 109.1, 69.8, 44.5, 31.0, 30.0, 29.6, 9.7. Anal. Calcd for C₁₃H₁₇NO₄: C, 62.14; H, 6.82; N, 5.57. Found: C, 62.34; H, 6.83; N, 5.75.

4.3.10. N-(2-Benzoyl-3-oxo-3-phenyl-1-thiophen-2-yl-propyl)acetamide **3***j*

White crystals, yield 44%, mp 148–149 °C; IR ν_{max} (KBr): 3346 (NH), 1690 (CO, diketone), 1658 (CO, amide) cm⁻¹; ¹H NMR δ 8.05 (d, *J*=8.5 Hz, 2H), 7.90 (d, *J*=8.4 Hz, 2H), 7.65 (t, *J*=7.4 Hz, 1H), 7.60–7.55 (m, 4H), 7.44 (t, *J*=7.8 Hz, 2H), 7.18 (dd, *J*=5.1, 1.1 Hz, 1H), 6.98 (d, *J*=3.5 Hz, 1H), 6.90 (dd, *J*=5.1, 3.6 Hz, 1H), 6.20 (dd, *J*=9.1, 3.9 Hz, 1H), 6.13 (d, *J*=3.9 Hz, 1H), 2.00 (s, 3H); ¹³C NMR δ 196.1, 193.7, 169.7, 143.2, 136.1, 134.2, 134.0, 129.3, 129.0, 128.6, 128.4, 126.8, 125.3, 125.1, 120.0, 59.1, 49.4, 23.2. Anal. Calcd for C₂₂H₁₉NO₃S: C, 70.00; H, 5.07; N, 3.71. Found: C, 69.91; H, 5.17; N, 3.57.

4.4. General procedure for the preparation of N-[β -(3,5-di and 1,3,5-trisubstituted pyrazol-4-yl)alkyl] amides (4a–j)

A solution of hydrazine (3 mmol) was slowly added to the corresponding β' -amido β -diketone (2 mmol) in absolute EtOH (10 mL) and the mixture was stirred at reflux for 1 h. The residue was placed on a silica gel column and eluted with hexanes/EtOAc (1:1) to give the pure product **4**.

4.4.1. N-[(3,5-Dimethyl-1H-pyrazol-4-yl)phenylmethyl]acetamide **4a**

White crystals. Yield 66%, mp 208–209 °C; IR ν_{max} (KBr): 3405–3150 (NH, br) 1646 (CO) cm⁻¹; ¹H NMR δ 7.33 (t, *J*=7.5 Hz, 2H), 7.28 (t, *J*=7.2 Hz, 1H), 7.22 (d, *J*=7.6 Hz, 2H), 6.28 (d, *J*=8.0 Hz, 1H), 6.10 (d, *J*=7.8 Hz, 1H), 2.10 (s, 3H), 2.08 (s, 6H); ¹³C NMR δ 169.4, 142.8, 140.5, 128.5, 127.1, 126.4, 115.7, 48.0, 23.2, 11.5. Anal. Calcd for C₁₄H₁₇N₃O: C, 69.11; H, 7.04; N, 17.27. Found: C, 69.02; H, 6.93; N, 17.04.

4.4.2. N-[(3-Methyl-5-phenyl-1H-pyrazol-4-yl)-(p-tolyl)methyl]propionamide **4b**

White crystals, yield 78%, mp 143–144 °C; IR ν_{max} (KBr): 3428–3124 (NH, br), 1647 (CO) cm⁻¹; ¹H NMR δ 7.43–7.40 (m, 2H), 7.36 (dd, *J*=5.0, 1.6 Hz, 3H), 7.13 (d, *J*=8.2 Hz, 2H), 7.09 (d, *J*=8.0 Hz, 2H), 6.39 (d, *J*=8.4 Hz, 1H), 5.96 (d, *J*=8.4 Hz, 1H), 2.35 (s, 3H), 2.16–2.09 (m, 2H), 2.08 (s, 3H), 1.04 (t, *J*=7.6 Hz, 3H); ¹³C NMR δ 172.6, 138.4, 136.9, 129.3, 128.8, 128.4, 126.7, 115.6, 47.7, 29.6, 25.1, 21.0, 9.5. Anal. Calcd for C₂₁H₂₃N₃O: C, 75.65; H, 6.95; N, 12.60. Found: C, 75.47; H, 7.16; N, 12.56.

4.4.3. N-[(4-Methoxyphenyl)-(1-methyl-3,5-diphenyl-1H-pyrazol-4-yl)methyl]-2,2-dimethyl propionamide **4c**

White crystals, yield 84%, mp 111–112 °C; IR ν_{max} (KBr): 3448 (NH), 1660 (CO) cm⁻¹; ¹H NMR δ 7.43–7.38 (m, 5H), 7.35–7.32 (m, 5H), 7.13 (d, *J*=8.2 Hz, 2H), 6.87 (d, *J*=8.8 Hz, 2H), 6.34 (d, *J*=9.1 Hz, 1H), 6.09 (d, *J*=9.0 Hz, 1H), 3.84 (s, 3H), 3.83 (s, 3H), 0.87 (s, 9H); ¹³C NMR δ 176.9, 158.6, 149.2, 142.4, 135.3, 129.9, 129.0, 128.7, 128.5, 128.0, 113.9, 55.3, 47.3, 38.4, 37.3, 27.1. Anal. Calcd for C₂₉H₃₁N₃O₂: C, 76.79; H, 6.89; N, 9.26. Found: C, 76.55; H, 7.05; N, 9.04.

4.4.4. N-[(3,5-Dimethyl-1-phenyl-1H-pyrazol-4-yl)-(4-fluoro-phenyl)methyl]propionamide **4d**

Yellow crystals, yield 80%, mp 178–179 °C; IR ν_{max} (KBr): 3255 (NH), 1669 (CO) cm⁻¹; ¹H NMR δ 7.49 (t, *J*=7.7 Hz, 2H), 7.44–7.39

(m, 3H), 7.24 (dd, *J*=8.4, 5.4 Hz, 2H), 7.04 (t, *J*=8.6 Hz, 2H), 6.33 (d, *J*=7.7 Hz, 1H), 6.03(d, *J*=7.6 Hz, 1H), 2.39–2.34 (m, 2H), 2.21 (s, 3H), 2.10 (s, 3H), 1.25 (t, *J*=7.6 Hz, 3H); 13 C NMR δ 173.0, 147.2, 137.8, 129.1, 128.1, 128.0, 127.8, 125.1, 117.8, 115.5, 115.3, 47.6, 29.7, 13.0, 11.1, 9.9. Anal. Calcd for C₂₁H₂₂FN₃O: C, 71.77; H, 6.31; N, 11.96. Found: C, 71.68; H, 6.51; N, 11.86.

4.4.5. N-[(4-Chlorophenyl)-(3,5-dimethyl-1-phenyl-1H-pyrazol-4-yl)methyl]propionamide **4e**

White crystals, yield 82%, mp 179–180 °C; IR ν_{max} (KBr): 3247 (NH), 1670 (CO) cm⁻¹; ¹H NMR δ 7.49 (t, *J*=7.6 Hz, 2H), 7.43–7.38 (m, 3H), 7.32 (d, *J*=8.4 Hz, 2H), 7.20 (d, *J*=8.4 Hz, 2H), 6.31 (d, *J*=7.7 Hz, 1H), 6.09 (d, *J*=7.5 Hz, 1H), 2.40–2.32 (m, 2H), 2.20 (s, 3H), 2.08 (s, 3H), 1.24 (t, *J*=7.6 Hz, 3H); ¹³C NMR δ 173.0, 147.2, 139.3, 139.2, 137.8, 133.0, 129.2, 128.7, 127.8, 125.1, 117.6, 47.6, 29.6, 13.0, 11.1, 9.9. Anal. Calcd for C₂₁H₂₂ClN₃O: C, 68.56; H, 6.03; N, 11.42. Found: C, 68.37; H, 6.24; N, 11.23.

4.4.6. N-[(3,5-Diphenyl-1H-pyrazol-4-yl)-(2-nitrophenyl)methyl]acetamide **4f**

White crystals, yield 89%, mp 255–256 °C; ν_{max} (KBr): 3412 (NH), 3340–3122 (NH, br), 1655 (CO) cm⁻¹; ¹H NMR δ 7.59 (dd, *J*=7.9, 1.3 Hz, 1H), 7.30 (d, *J*=4.5 Hz, 2H), 7.26 (d, *J*=4.4 Hz, 8H), 7.22 (dt, *J*=6.9, 1.4 Hz, 2H), 7.16 (dt, *J*=7.0, 1.3 Hz, 1H), 6.97 (d, *J*=7.8 Hz, 1H), 6.23 (d, *J*=7.8 Hz, 1H), 1.78 (s, 3H); ¹³C NMR δ 169.0, 148.5, 135.0, 132.2, 129.7, 128.7, 128.5, 128.4, 128.1, 124.8, 113.9, 47.1, 22.7. Anal. Calcd for C₂₄H₂₀N₄O₃: C, 69.89; H, 4.89; N, 13.58. Found: C, 69.66; H, 5.01; N, 13.37.

4.4.7. N-[(3,5-Dimethyl-1H-pyrazol-4-yl)naphthalen-1-ylmethyl]acetamide **4g**

White crystals, yield 95%, mp 245–246 °C; lR ν_{max} (KBr): 3410–3155 (NH, br), 1649 (CO) cm⁻¹; ¹H NMR δ 7.89 (t, *J*=8.3 Hz, 2H), 7.83 (d, *J*=7.8 Hz, 1H), 7.50–7.46 (m, 2H), 7.44 (d, *J*=7.7 Hz, 1H), 7.41 (d, *J*=6.7 Hz, 1H), 6.87 (d, *J*=7.7 Hz, 1H), 5.96 (d, *J*=7.7 Hz, 1H), 2.11 (s, 3H), 2.04 (s, 6H); ¹³C NMR δ 168.6, 135.6, 134.1, 130.9, 128.8, 128.5, 126.4, 125.9, 125.0, 123.9, 123.5, 115.1, 65.9, 46.4, 23.2, 11.6. Anal. Calcd for C₁₈H₁₉N₃O: C, 73.69; H, 6.53; N, 14.32. Found: C, 73.79; H, 6.69; N, 14.28.

4.4.8. N-[(3,5-Dimethyl-1H-pyrazol-4-yl)-(pyridin-3-yl)methyl]-2,2-dimethyl propionamide **4h**

White crystals, yield 63%, mp 127–128 °C; IR ν_{max} (KBr): 3461– 3158 (NH, br), 1645 (CO) cm⁻¹; ¹H NMR δ 8.54 (d, *J*=15.0 Hz, 2H), 7.57 (br s, 1H), 7.49 (d, *J*=8.3 Hz, 1H), 7.31 (s, 1H), 6.26 (d, *J*=7.2 Hz, 1H), 6.18 (d, *J*=7.2 Hz, 1H), 2.12 (s, 6H), 1.29 (s, 9H); ¹³C NMR 177.9, 148.1, 147.7, 142.8, 136.7, 134.4, 123.6, 115.0, 46.2, 38.9, 31.6, 27.6, 11.5. Anal. Calcd for C₁₆H₂₂N₄O: C, 67.11; H, 7.74; N, 19.56. Found: C, 67.28; H, 7.93; N, 19.38.

4.4.9. 2,2-Dimethyl-N-[pyridin-3-yl-(1,3,5-trimethyl-1H-pyrazol-4-yl)methyl]propionamide **4i**

White crystals, yield 78%, mp 142–143 °C; IR ν_{max} (KBr): 3309 (NH), 1629 (CO) cm⁻¹; ¹H NMR δ 8.51–8.46 (m, 2H), 7.47 (d, *J*=7.9 Hz, 1H), 7.27–7.24 (m, 1H), 6.19 (d, *J*=7.3 Hz, 1H), 6.08 (d, *J*=7.2 Hz, 1H), 3.70 (s, 3H), 2.12 (s, 3H), 2.02 (s, 3H), 1.26 (s, 9H); ¹³C NMR δ 177.7, 148.3, 148.1, 145.1, 136.6, 134.1, 123.3, 115.4, 46.5, 36.0, 27.6, 27.3, 12.9, 9.9. Anal. Calcd for C₁₇H₂₄N₄O: C, 67.97; H, 8.05; N, 18.65. Found: C, 67.74; H, 8.14; N, 18.46.

4.4.10. N-[(3,5-Dimethyl-1H-pyrazol-4-yl)-furan-3-ylmethyl]propionamide **4**j

Yellow crystals, yield 77%, mp 177–178 °C; IR ν_{max} (KBr): 3464–3125 (NH, br), 1651(CO) cm⁻¹; ¹H NMR δ 9.35 (br s, 1H), 7.37 (s, 1H), 7.13 (s, 1H), 6.26 (d, *J*=7.9 Hz, 1H), 6.22 (s, 1H), 6.10 (d, *J*=7.3 Hz, 1H), 2.30–2.22 (m, 2H), 2.17 (s, 6H), 1.16 (t, *J*=7.6 Hz, 3H); ¹³C NMR

 δ 173.0, 143.6, 142.4, 139.9, 126.5, 115.0, 109.8, 41.5, 29.6, 11.4, 9.9. Anal. Calcd for C $_{13}H_{17}N_3O_2$: C, 63.14; H, 6.93; N, 16.99. Found: C, 63.07; H, 7.08; N, 16.72.

4.4.11. N-[(3,5-Diphenyl-1H-pyrazol-4-yl)-thiophen-2-ylmethyl]acetamide **4k**

White crystals, yield 59%, mp 167–169 °C; IR ν_{max} (KBr): 3426 (NH), 3352–3131 (NH, br) cm⁻¹; ¹H NMR δ 7.52–7.48 (m, 4H), 7.40–7.39 (m, 6H), 7.29 (d, *J*=4.3 Hz, 1H), 6.95 (t, *J*=4.3 Hz, 1H), 6.87 (dd, *J*=3.4, 1.1 Hz, 1H), 6.66 (d, *J*=8.9 Hz, 1H), 5.98 (d, *J*=8.9 Hz, 1H), 1.68 (s, 3H); ¹³C NMR δ 168.7, 147.7, 129.0, 128.8, 128.5, 127.2, 125.4, 115.9, 45.1, 22.9. Anal. Calcd for C₂₂H₁₉N₃OS: C, 70.75; H, 5.13; N, 11.25. Found: C, 70.55; H, 5.37; N, 10.98.

References and notes

- (a) De Wald, H. A.; Lobbestael, S.; Poschel, B. P. H. J. Med. Chem. **1981**, 24, 982–987;
 (b) Terret, N. K.; Bell, A. S.; Brown, D.; Ellips, P. Bioorg. Med. Chem. Lett. **1996**, 6, 1819–1824;
 (c) Penning, T. D.; Talley, J. J.; Bertenshaw, S. R.; Cater, J. S.; Collins, P. W.; Docter, S.; Graneto, M. J.; Lee, L. F.; Malecha, J. W.; Miyashiro, J. M.; Rogers, R. S.; Rogier, D. J.; Yu, S. S.; Anderson, G. D.; Burton, E. G.; Cogburn, J. N.; Gregory, S. A.; Koboldt, C. M.; Perkins, W. E.; Seibert, K.; Vennhuizen, A. W.; Zhang, Y. Y.; Isakson, P. J. Med. Chem. **1997**, 40, 1347–1365;
 (d) Rinaldi-Carmona, M.; Barth, F.; Heaulme, M.; Shire, D.; Calandra, B.; Congy, C.; Martinez, S.; Maruani, J.; Neliat, G.; Caput, D.; Ferrara, P.; Soubrie, P.; Breliere, J. C.; Le Fur, G. FEBS Lett. **1994**, 350, 240–244.
- (a) Pitt, G. R.; Batt, A. R.; Haigh, R. M.; Penson, A. M.; Robson, P. A.; Rooker, D. P.; Tartar, A. L.; Trim, J. E.; Yea, C. R.; Roe, M. B. Bioorg. Med. Chem. Lett. 2004, 14, 3043–3047; (b) Lin, R.; Chiu, G.; Yu, Y.; Connolly, P. J.; Li, S.; Lu, Y.; Adams, M.; Fuentes-Pesquera, A. R.; Emanuel, S. L.; Greenberger, L. M. Bioorg. Med. Chem. Lett. 2007, 17, 4557–4561; (c) Gokhan-Kelekci, N.; Yabanoglu, S.; Kupeli, E.; Salgin, U.; Ozgen, O.; Ucar, G.; Yesilada, E.; Kendi, E.; Yesilada, A.; Bilgin, A. A. Bioorg. Med.Chem. Lett. 2007, 15, 5775–5786.
- Loewe, I.; Balzer, W. R.; Gerstung, S. Ger. Offen. 19619112, 1997; Chem. Abstr. 1997, 128, 16281.
- 4. Csunderlik, C.; Bercean, V.; Peter, F.; Bedea, V. ARKIVOC 2002, ii, 133-141.
- Siddal, T. L.; Ouse, D. G.; Benko, Z. L.; Garvin, G. M.; Jackson, J. L.; McQuiston, J. M.; Ricks, M. J.; Thibault, T. D.; Turner, J. A.; VanHeertum, J. C.; Weimer, M. R. *Pest Manag. Sci.* 2002, *58*, 1175–1186.
- 6. Funaki, J.; Imai, K.; Araki, K.; Danel, A.; Tomasik, P. Pol. J. Chem. **2004**, 78, 843–850.
- Baroni, E. E.; Kovyrzina, K. A. Zh. Obshch. Khim. 1961, 31, 1641–1645.
 (a) Kashima, C.; Miwa, Y.; Shibata, S.; Nakozono, H. J. Heterocycl. Chem. 2003, 40,
- 68. (a) Kashinia, C.; Miwa, Y.; Sinbata, S.; Nakozono, H.J. Heterocycl. Chem. 2005, 40, 681–687; (b) Kashima, C.; Higashide, K.; Miwa, Y.; Tsukamoto, Y. J. Heterocycl. Chem. 2002, 39, 917–925.

- (a) Mukherjee, A.; Sarkar, A. ARKIVOC 2003, ix, 87–95; (b) Sanz, D.; Jimenez, J. A.; Claramunt, R. M.; Elguero, J. ARKIVOC 2004, iv, 100–108.
- (a) Elguero, J. In Comprehensive Heterocyclic Chemistry; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon: Oxford, 1996; Vol. 3, pp 1–75; (b) Kost, A. N.; Grandberg, I. I. Adv. Heterocycl. Chem. 1966, 6, 347–429.
- (a) Ege, G.; Franz, H. J. Heterocycl. Chem. 1982, 19, 1267–1273; (b) Sing, S. K.; Reddy, M. S.; Shivaramakrishna, S.; Kavitha, D.; Vasudev, R.; Babu, J. M.; Sivalakshmidevi, A.; Rao, Y. K. Tetrahedron Lett. 2004, 45, 7679–7682; (c) Katritzky, A. R.; Galuszka, B.; Rachwal, S.; Black, M. J. Heterocycl. Chem. 1994, 31, 917–923; (d) Polshettiwar, V.; Varma, R. S. Tetrahedron Lett. 2008, 49, 397–400; (e) Heller, S. T.; Natarajan, S. R. Org. Lett. 2006, 8, 2675–2678; (f) Fustero, S.; Román, R.; Sanz-Cervera, J. F.; Simón-Fuentes, A.; Cuñat, A. C.; Villanova, S.; Murguía, M. J. Org. Chem. 2008, 73, 3523–3529; (g) Nishiwaki, N.; Matsushima, K.; Chatani, M.; Tamura, M.; Arida, M. Synlett 2004, 703–707; (h) Vicente, V.; Fruchier, A.; Elguero, J. ARKIVOC 2004, iii, 5–10; (i) Norris, T.; Colon-Cruz, R.; Ripin, D. H. B. Org. Biomol. Chem. 2005, 3, 1844–1849; (j) Bishop, B. C.; Brands, K. M. J.; Gibb, A. D.; Kennedy, D. J. Synthesis 2004, 43–52; (k) Miller, R. D.; Reiser, O. J. Heterocycl. Chem. 1993, 30, 755–763.
- (a) Conti, P.; Pinto, A.; Tamborini, L.; Rizzo, V.; Micheli, C. De. Tetrahedron 2007, 63, 5554–5560; (b) Padwa, A. 1,3-Dipolar Cycloaddition Chemistry; John Wiley & Sons: New York, NY, 1984; Vol I; (c) Aggarwal, V. K.; Vicente, J.; Bonnert, R. V. J. Org. Chem. 2003, 68, 5381–5383; (d) Huisgen, R. Angew. Chem., Int. Ed. Engl. 1963, 2, 565–632; (e) Jung, M. E.; Trifunovich, I. D. Tetrahedron Lett. 1992, 33, 2921–2924; (f) Nakano, Y.; Hamaguchi, M.; Nagai, T. J. Org. Chem. 1989, 54, 5912–5919; (g) Foti, F.; Grassi, G.; Risitano, F. Tetrahedron Lett. 1999, 40, 2605– 2606; (h) Deng, X.; Mani, N. S. J. Org. Chem. 2008, 73, 2412–2415.
- (a) Yoshimatsu, M.; Kawahigashi, M.; Honda, E.; Kataoka, T. J. Chem. Soc., Perkin Trans. 1 1997, 695–700; (b) Kamitori, Y.; Hojo, M.; Masuda, M. R.; Fujishiro, M.; Wada, M. Heterocycles 1994, 38, 21–25; (c) Katritzky, A. R.; Musgrave, R. P.; Breytenbach, J. C. J. Heterocycl. Chem. 1996, 33, 1637–1646.
- (a) Katritzky, A. R.; Drewniak, M.; Lue, P. J. Org. Chem. 1988, 53, 5854–5856;
 (b) Katritzky, A. R.; Pernak, J.; Fan, W. Q. J. Org. Chem. 1991, 56, 4439–4443; (c) Katritzky, A. R.; Shobana, N.; Harris, P. A. Org. Prep. Proceed. Int. 1992, 121–126; (d) Katritzky, A. R.; Takahashi, I.; Fan, W. Q.; Pernak, J. Synthesis 1991, 1147–1150; (e) Katritzky, A. R.; Fan, W. Q.; Black, M.; Pernak, J. J. Org. Chem. 1992, 57, 547–549; (f) Katritzky, A. R.; Pernak, J.; Fan, W. Q. Synthesis 1991, 868–870; (g) Katritzky, A. R.; Urogdi, L.; Mayence, A. J. Org. Chem. 1990, 55, 2206–2214; (h) Katritzky, A. R.; Abdel-Fattah, A. A. A.; Celik, I. ARKIVOC 2007, xi, 96–113.
- (a) Kobinata, K.; Uramoto, M.; Nishii, M.; Kusakabe, H.; Nakamura, G.; Isono, K. Agric. Biol. Chem. **1980**, 44, 1709–1711; (b) Daehn, U.; Hagenmaier, H.; Hoehne, H.; Koenig, W. A.; Wolf, G.; Zaehner, H. Arch. Microdiol **1976**, 107, 249.
- (a) Barluenga, J.; Viado, A. L.; Aguilar, E.; Fustero, S.; Olano, B. J. Org. Chem. 1993, 58, 5972–5975; (b) Enders, D.; Moser, M.; Geibel, G.; Laufer, M. C. Synthesis 2004, 2040–2046.
- 17. Mukhopadhyay, M.; Bhatia, B.; Iqbal, J. Tetrahedron Lett. **1997**, 38, 1083–1086.
- (a) Khan, A. B.; Parvin, P.; Choudhury, L. H. *Tetrahedron* **2007**, 63, 5593–5601; (b)
 Ghosh, R.; Maiti, S.; Ghosh, S.; Mukherjeeb, A. K. *Synthesis* **2007**, 190–196; (c)
 Lou, S.; Dai, P.; Schaus, S. E. J. Org. Chem. **2007**, 72, 9998–10008.